Discreteness-Aware AMP for Reconstruction of Symmetrically Distributed Discrete Variables

Ryo Hayakawa (Graduate School of Informatics, Kyoto University)
Kazunori Hayashi (Graduate School of Engineering, Osaka City University)

This work was supported in part by the Grants-in-Aid for Scientific Research no. 15K06064 and 15H2252 from MEXT.

Abstract

We propose a message passing-based algorithm to **reconstruct a discrete-valued vector** whose elements have a symmetric probability distribution. The proposed algorithm, referred to as **discreteness-aware approximate message passing (DAMP)**, borrows the idea of the AMP algorithm for compressed sensing. We analytically evaluate the performance of DAMP via state evolution framework to **derive a required number of linear measurements** for the exact reconstruction with DAMP.

1. Introduction

Discreteness-aware AMP for Reconstruction of Discrete-valued Vector

reconstruct a discrete-valued vector $b \in \mathbb{R}^N$ from its linear measurements $y = Ab \in \mathbb{R}^M$ ($N \geq M$)

Potential applications

- multiuser detection (Machine-to-Machine)
- MIMO signal detection (Multi-input Multiple-output)
- FTN signaling (Faster-than-Nyquist)

Purpose of this work

- propose a low-complexity algorithm for the discrete-valued vector reconstruction
- theoretically analyze the performance of the proposed algorithm via state evolution [1]

2. Proposed DAMP Algorithm

Assumption

$b \in \{0, \pm r_1, \ldots, \pm r_L\}^N$ (Pr($b_j = r_i$) = Pr($b_j = -r_i$))

A is composed of i.i.d. variables with zero mean and variance $1/M$

SOAV (Sum-of-Absolute-Value) optimization [2]

use the fact that some elements of $b \pm r_1$ are 0

$$
\hat{b} = \arg \min_{x \in \mathbb{R}^N} \left\{ q_0 ||x||_1 + \sum_{i=1}^L q_i(||x - r_i 1||_1 + ||x + r_i 1||_1) \right\},
$$

subject to $y = Ax$

apply the idea of AMP algorithm [1]

Proposed algorithm (DAMP: Discreteness-aware AMP)

1. **Initialization** $x^{-1} = x^0 = 0$, $z^{-1} = 0$

2. For $t = 0, 1, \ldots$ calculate

 estimate of b

 $x^{t+1} = \eta(A^T z^t + x^t, \lambda \sigma_t),$

 $$
 z^{t+1} = y - Ax^{t+1} + \frac{1}{2} z^{t-1} \left(\eta'(A^T z^{t-1} + x^{t-1}, \lambda \sigma_{t-1}) \right).
 $$

 complexity: $O(MN)$ per iteration

 $$
 \Delta = M/N : \text{observation ratio}
 $$

 $\langle \cdot \rangle : \text{mean}
 $$

 $\sigma_t^2 = \frac{1}{2} ||x^t - b||_2^2 : \text{Mean-Square-Error (MSE)}$

3. State Evolution for DAMP

State evolution [1]

 predict the behavior of the MSE \(\{\sigma_t^2\}_{t=0,1,\ldots} \)

in the large system limit \(N, M \to \infty, M/N = \Delta \)

$$
\frac{d\Psi}{d(\sigma^2)}|_{\sigma^2=0} < 1 \Rightarrow \text{Success}
$$

Phase transition of DAMP

required observation ratio for DAMP

4. Simulation Results

$b \in \{0, \pm 1\}^N$

empirical (N = 100)

$P_0 = 0.2$

$\Delta = 0.7$

$b \in \{0, \pm 1\}^N$

$N = 1000$

approach the theoretical performance as N increases

rapidly increase around the theoretical boundary
